Docker复杂安装详说

gong_yz大约 18 分钟Docker

1. 安装mysql主从复制

1.1. 主从复制原理

参考:


1.2. 主从搭建步骤

1、新建主服务器容器实例3307

docker run -p 3307:3306 --name mysql-master \
-v /mydata/mysql-master/log:/var/log/mysql \
-v /mydata/mysql-master/data:/var/lib/mysql \
-v /mydata/mysql-master/conf:/etc/mysql \
-e MYSQL_ROOT_PASSWORD=root  \
-d mysql:5.7

进入/mydata/mysql-master/conf目录下新建my.cnf:vim my.cnf

[mysqld]
## 设置server_id,同一局域网中需要唯一
server_id=101 
## 指定不需要同步的数据库名称
binlog-ignore-db=mysql  
## 开启二进制日志功能
log-bin=mall-mysql-bin  
## 设置二进制日志使用内存大小(事务)
binlog_cache_size=1M  
## 设置使用的二进制日志格式(mixed,statement,row)
binlog_format=mixed  
## 二进制日志过期清理时间。默认值为0,表示不自动清理。
expire_logs_days=7  
## 跳过主从复制中遇到的所有错误或指定类型的错误,避免slave端复制中断。
## 如:1062错误是指一些主键重复,1032错误是因为主从数据库数据不一致
slave_skip_errors=1062

修改完配置后重启master实例

docker restart mysql-master

进入mysql-master容器

docker exec -it mysql-master /bin/bash

操作mysql

mysql -uroot -proot

master容器实例内创建数据同步用户

CREATE USER 'slave'@'%' IDENTIFIED BY '123456';
GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'slave'@'%';

新建从服务器容器实例3308

docker run -p 3308:3306 --name mysql-slave \
-v /mydata/mysql-slave/log:/var/log/mysql \
-v /mydata/mysql-slave/data:/var/lib/mysql \
-v /mydata/mysql-slave/conf:/etc/mysql \
-e MYSQL_ROOT_PASSWORD=root  \
-d mysql:5.7

进入/mydata/mysql-slave/conf目录下新建my.cnf

[mysqld]
## 设置server_id,同一局域网中需要唯一
server_id=102
## 指定不需要同步的数据库名称
binlog-ignore-db=mysql  
## 开启二进制日志功能,以备Slave作为其它数据库实例的Master时使用
log-bin=mall-mysql-slave1-bin  
## 设置二进制日志使用内存大小(事务)
binlog_cache_size=1M  
## 设置使用的二进制日志格式(mixed,statement,row)
binlog_format=mixed  
## 二进制日志过期清理时间。默认值为0,表示不自动清理。
expire_logs_days=7  
## 跳过主从复制中遇到的所有错误或指定类型的错误,避免slave端复制中断。
## 如:1062错误是指一些主键重复,1032错误是因为主从数据库数据不一致
slave_skip_errors=1062  
## relay_log配置中继日志
relay_log=mall-mysql-relay-bin  
## log_slave_updates表示slave将复制事件写进自己的二进制日志
log_slave_updates=1  
## slave设置为只读(具有super权限的用户除外)
read_only=1

修改完配置后重启slave实例

docker restart mysql-slave

在主数据库中查看主从同步状态

show master status;

进入mysql-slave容器

docker exec -it mysql-slave /bin/bash

操作mysql

mysql -uroot -proot

在从数据库中配置主从复制

change master to master_host='192.168.129.129', master_user='slave', master_password='123456', master_port=3307, master_log_file='mall-mysql-bin.000001', master_log_pos=617, master_connect_retry=30;
image-20220418203622233
image-20220418203622233

主从复制命令参数说明:

  • master_host:主数据库的IP地址;
  • master_port:主数据库的运行端口;
  • master_user:在主数据库创建的用于同步数据的用户账号;
  • master_password:在主数据库创建的用于同步数据的用户密码;
  • master_log_file:指定从数据库要复制数据的日志文件,通过查看主数据的状态,获取File参数;
  • master_log_pos:指定从数据库从哪个位置开始复制数据,通过查看主数据的状态,获取Position参数;
  • master_connect_retry:连接失败重试的时间间隔,单位为秒。

在从数据库中查看主从同步状态:

show slave status \G;
image-20220418203823345
image-20220418203823345

在从数据库中开启主从同步

start slave;

查看从数据库状态发现还是存在问题:问题所在:发现Master_Log_File没有对应。

Slave_IO_Running: No
image-20220418204011211
image-20220418204011211

查看主服务器状态:

image-20220418204211734
image-20220418204211734

查看从服务器状态:

image-20220418204255511
image-20220418204255511

发现Master_Log_File没有对应。

解决方法:

  • 出现Slave_IO_Running: No的机器上操作,即操作从机器

    stop slave;
    CHANGE MASTER TO MASTER_LOG_FILE='mall-mysql-bin.000006', MASTER_LOG_POS=0;
    start slave;
    
    image-20220418204630694
    image-20220418204630694

Slave_SQL_Running:noopen in new window

主从复制测试

  • 主机新建库-使用库-新建表-插入数据,ok
  • 从机使用库-查看记录,ok

2. 安装redis集群

cluster(集群)模式-docker版 哈希槽分区进行亿级数据存储。

2.1. 面试题

1~2亿条数据需要缓存,请问如何设计这个存储案例?

回答:单机单台100%不可能,肯定是分布式存储,用redis如何落地?

上述问题阿里P6~P7工程案例和场景设计类必考题目, 一般业界有3种解决方案。

2.1.1. 哈希取余分区

image-20220505172045488
image-20220505172045488

2亿条记录就是2亿个k,v,我们单机不行必须要分布式多机,假设有3台机器构成一个集群,用户每次读写操作都是根据公式:hash(key) % N个机器台数,计算出哈希值,用来决定数据映射到哪一个节点上。

优点

简单粗暴,直接有效,只需要预估好数据规划好节点,例如3台、8台、10台,就能保证一段时间的数据支撑。使用Hash算法让固定的一部分请求落到同一台服务器上,这样每台服务器固定处理一部分请求(并维护这些请求的信息),起到负载均衡+分而治之的作用。

缺点

原来规划好的节点,进行扩容或者缩容就比较麻烦了额,不管扩缩,每次数据变动导致节点有变动,映射关系需要重新进行计算,在服务器个数固定不变时没有问题,如果需要弹性扩容或故障停机的情况下,原来的取模公式就会发生变化:

Hash(key)/3会变成Hash(key) /?

此时地址经过取余运算的结果将发生很大变化,根据公式获取的服务器也会变得不可控。某个redis机器宕机了,由于台数数量变化,会导致hash取余全部数据重新洗牌。

2.1.2. 一致性哈希算法分区

一致性Hash算法背景:

  • 一致性哈希算法在1997年由麻省理工学院中提出的,设计目标是为了解决分布式缓存数据变动和映射问题,某个机器宕机了,分母数量改变了,自然取余数不OK了。

能干嘛

  • 提出一致性Hash解决方案。 目的是当服务器个数发生变动时, 尽量减少影响客户端到服务器的映射关系。

3大步骤

  • 算法构建一致性哈希环

    • 一致性哈希算法必然有个hash函数并按照算法产生hash值,这个算法的所有可能哈希值会构成一个全量集,这个集合可以成为一个hash空间[0,2^32-1],这个是一个线性空间,但是在算法中,我们通过适当的逻辑控制将它首尾相连(0 = 2^32),这样让它逻辑上形成了一个环形空间。

    • 它也是按照使用取模的方法,前面笔记介绍的节点取模法是对节点(服务器)的数量进行取模。而一致性Hash算法是对232取模,简单来说,一致性**Hash算法将整个哈希值空间组织成一个虚拟的圆环**,如假设某哈希函数H的值空间为0-232-1(即哈希值是一个32位无符号整形),整个哈希环如下图:整个空间按顺时针方向组织,圆环的正上方的点代表0,0点右侧的第一个点代表1,以此类推,2、3、4、……直到232-1,也就是说0点左侧的第一个点代表232-1, 0和232-1在零点中方向重合,我们把这个由232个点组成的圆环称为Hash环。

      image-20220505180159138
      image-20220505180159138
  • 服务器IP节点映射

    • 将集群中各个IP节点映射到环上的某一个位置。

    • 将各个服务器使用Hash进行一个哈希,具体可以选择服务器的IP或主机名作为关键字进行哈希,这样每台机器就能确定其在哈希环上的位置。假如4个节点NodeA、B、C、D,经过IP地址的哈希函数计算(hash(ip)),使用IP地址哈希后在环空间的位置如下:

      image-20220505180307026
      image-20220505180307026
  • key落到服务器的落键规则

    • 当我们需要存储一个kv键值对时,首先计算key的hash值,hash(key),将这个key使用相同的函数Hash计算出哈希值并确定此数据在环上的位置,从此位置沿环顺时针“行走”,第一台遇到的服务器就是其应该定位到的服务器,并将该键值对存储在该节点上。

    • 如我们有Object A、Object B、Object C、Object D四个数据对象,经过哈希计算后,在环空间上的位置如下:根据一致性Hash算法,数据A会被定为到Node A上,B被定为到Node B上,C被定为到Node C上,D被定为到Node D上。

      image-20220505180349974
      image-20220505180349974

优点

  • 容错性

    • 假设Node C宕机,可以看到此时对象A、B、D不会受到影响,只有C对象被重定位到Node D。

    • 一般的,在一致性Hash算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即沿着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。简单说,就是C挂了,受到影响的只是B、C之间的数据,并且这些数据会转移到D进行存储。

      image-20220505180502602
      image-20220505180502602
  • 扩展性

    • 数据量增加了,需要增加一台节点NodeX,X的位置在A和B之间,那收到影响的也就是A到X之间的数据,重新把A到X的数据录入到X上即可, 不会导致hash取余全部数据重新洗牌。
    • image-20220505180539823
      image-20220505180539823

缺点

  • Hash环的数据倾斜问题

    • 一致性Hash算法在服务节点太少时,容易因为节点分布不均匀而造成数据倾斜(被缓存的对象大部分集中缓存在某一台服务器上)问题,

    • 例如系统中只有两台服务器:

      image-20220505180644071
      image-20220505180644071

小总结

  • 为了在节点数目发生改变时尽可能少的迁移数据,将所有的存储节点排列在收尾相接的Hash环上,每个key在计算Hash后会顺时针找到临近的存储节点存放。 而当有节点加入或退出时仅影响该节点在Hash环上顺时针相邻的后续节点。
  • 优点:加入和删除节点只影响哈希环中顺时针方向的相邻的节点,对其他节点无影响。
  • 缺点:数据的分布和节点的位置有关,因为这些节点不是均匀的分布在哈希环上的,所以数据在进行存储时达不到均匀分布的效果。

2.1.3. 哈希槽分区

是什么

哈希槽实质就是一个数组,数组[0,2^14 -1]形成hash slot空间。

能干什么

解决均匀分配的问题,在数据和节点之间又加入了一层,把这层称为哈希槽(slot),用于管理数据和节点之间的关系,现在就相当于节点上放的是槽,槽里放的是数据。

image-20220505181020971
image-20220505181020971

槽解决的是粒度问题,相当于把粒度变大了,这样便于数据移动。

哈希解决的是映射问题,使用key的哈希值来计算所在的槽,便于数据分配。

多少个hash槽

一个集群只能有16384个槽,编号0-16383(0-2^14-1)。这些槽会分配给集群中的所有主节点,分配策略没有要求。可以指定哪些编号的槽分配给哪个主节点。集群会记录节点和槽的对应关系。解决了节点和槽的关系后,接下来就需要对key求哈希值,然后对16384取余,余数是几key就落入对应的槽里。slot = CRC16(key) % 16384。以槽为单位移动数据,因为槽的数目是固定的,处理起来比较容易,这样数据移动问题就解决了。

哈希槽计算

Redis 集群中内置了 16384 个哈希槽,redis 会根据节点数量大致均等的将哈希槽映射到不同的节点。当需要在 Redis 集群中放置一个 key-value时,redis 先对 key 使用 crc16 算法算出一个结果,然后把结果对 16384 求余数,这样每个 key 都会对应一个编号在 0-16383 之间的哈希槽,也就是映射到某个节点上。如下代码,key之A 、B在Node2, key之C落在Node3上。

image-20220505181152071
image-20220505181152071
image-20220505181203103
image-20220505181203103

3. 3主3从redis集群配置

3.1. 关闭防火墙+启动docker后台服务

systemctl stop firewalld
systemctl start docker

3.2. 新建6个docker容器redis实例

docker run -d --name redis-node-1 --net host --privileged=true -v /data/redis/share/redis-node-1:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6381

docker run -d --name redis-node-2 --net host --privileged=true -v /data/redis/share/redis-node-2:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6382

docker run -d --name redis-node-3 --net host --privileged=true -v /data/redis/share/redis-node-3:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6383

docker run -d --name redis-node-4 --net host --privileged=true -v /data/redis/share/redis-node-4:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6384

docker run -d --name redis-node-5 --net host --privileged=true -v /data/redis/share/redis-node-5:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6385

docker run -d --name redis-node-6 --net host --privileged=true -v /data/redis/share/redis-node-6:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6386

命令分步解释

  • docker run:创建并运行docker容器实例
  • --name redis-node-6:容器名字
  • --net host:使用宿主机的IP和端口,默认
  • --privileged=true:获取宿主机root用户权限
  • -v /data/redis/share/redis-node-6:/data:容器卷,宿主机地址:docker内部地址
  • redis:6.0.8:redis镜像和版本号
  • --cluster-enabled yes:开启redis集群
  • --appendonly yes:开启持久化
  • --port 6386:redis端口号

如果运行成功,效果如下:

image-20220506152318467
image-20220506152318467

3.3. 进入容器redis-node-1并为6台机器构建集群关系

进入容器

docker exec -it redis-node-1 /bin/bash

构建主从关系

注意,进入docker容器后才能执行一下命令,且注意自己的真实IP地址。

redis-cli --cluster create 192.168.111.147:6381 192.168.111.147:6382 192.168.111.147:6383 192.168.111.147:6384 192.168.111.147:6385 192.168.111.147:6386 --cluster-replicas 1

--cluster-replicas 1: 表示为每个master创建一个slave节点。

image-20220506153235729
image-20220506153235729
image-20220506153311989
image-20220506153311989
image-20220506153322508
image-20220506153322508
image-20220506153340072
image-20220506153340072

一切OK的话,3主3从搞定。

3.4. 查看集群状态

链接进入6381作为切入点,查看集群状态

redis-cli -p 6381
cluster info
image-20220506153533372
image-20220506153533372
cluster nodes
image-20220506153550182
image-20220506153550182

4. 主从容错切换迁移案例

4.1. 数据读写存储

启动6个节点构成的集群并通过exec进入

docker exec -it redis-node-1 /bin/bash
redis-cli -p 6381

对6381新增两个key

image-20220506153845310
image-20220506153845310

我们每存储一个key,都会先计算哈希槽的落点,有的落点超过了分配的哈希槽区域,就会存储失败,其实我们现在要连接的是整个集群,而不是单个节点,防止路由失效加参数**-c**并新增两个key。

image-20220506153943527
image-20220506153943527

查看集群信息

redis-cli --cluster check 192.168.111.147:6381
image-20220506154024728
image-20220506154024728
image-20220506154034203
image-20220506154034203

4.2. 容错切换迁移

主6381和从机切换,先停止主机6381。6381主机停了,对应的真实从机上位。

6381作为1号主机分配的从机以实际情况为准,具体是几号机器就是几号。

再次查看集群信息:

image-20220506154221512
image-20220506154221512

6381宕机了,6385上位成为了新的master。

先还原之前的3主3从,中间需要等待一会儿,docker集群重新响应。

image-20220506154458949
image-20220506154458949
  • 先启6381

    docker start redis-node-1
    
    image-20220506154549555
    image-20220506154549555
  • 再停6385

    docker stop redis-node-5
    
    image-20220506154621250
    image-20220506154621250
  • 再启6385

    docker start redis-node-5
    
    image-20220506154651062
    image-20220506154651062

主从机器分配情况以实际情况为准。

查看集群状态

redis-cli --cluster check 自己IP:6381
image-20220506154732779
image-20220506154732779

5. 主从扩容案例

5.1. 新建6387、6388两个节点+新建后启动+查看是否8节点

docker run -d --name redis-node-7 --net host --privileged=true -v /data/redis/share/redis-node-7:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6387

docker run -d --name redis-node-8 --net host --privileged=true -v /data/redis/share/redis-node-8:/data redis:6.0.8 --cluster-enabled yes --appendonly yes --port 6388

docker ps

5.2. 进入6387容器实例内部

docker exec -it redis-node-7 /bin/bash

5.3. 将新增的6387节点(空槽号)作为master节点加入原集群

redis-cli --cluster add-node 自己实际IP地址:6387 自己实际IP地址:6381
  • 6387 就是将要作为master新增节点
  • 6381 就是原来集群节点里面的领路人,相当于6387拜拜6381的码头从而找到组织加入集群
image-20220506155050241
image-20220506155050241
image-20220506155102216
image-20220506155102216

5.4. 检查集群情况第1次

redis-cli --cluster check 真实ip地址:6381
image-20220506155128368
image-20220506155128368
image-20220506155138599
image-20220506155138599

5.5. 重新分派槽号

命令:

redis-cli --cluster reshard IP地址:端口号

redis-cli --cluster reshard 192.168.111.147:6381
image-20220506155209130
image-20220506155209130
image-20220506155216244
image-20220506155216244

5.6. 检查集群情况第2次

命令

redis-cli --cluster check 真实ip地址:6381
image-20220506155240108
image-20220506155240108
image-20220506155251048
image-20220506155251048

槽号分派说明

为什么6387是3个新的区间,以前的还是连续?

重新分配成本太高,所以前3家各自匀出来一部分,从6381/6382/6383三个旧节点分别匀出1364个坑位给新节点6387。

image-20220506155406081
image-20220506155406081

5.7. 为主节点6387分配从节点6388

命令

redis-cli --cluster add-node ip:新slave端口 ip:新master端口 --cluster-slave --cluster-master-id 新主机节点ID

redis-cli --cluster add-node 192.168.111.147:6388 192.168.111.147:6387 --cluster-slave --cluster-master-id e4781f644d4a4e4d4b4d107157b9ba8144631451 ---这个是6387的编号,按照自己实际情况
image-20220506155508641
image-20220506155508641
image-20220506155518296
image-20220506155518296

5.8. 检查集群情况第3次

redis-cli --cluster check 192.168.111.147:6382
image-20220506155540020
image-20220506155540020
image-20220506155547388
image-20220506155547388

6. 主从缩容案例

6.1. 目的

目的:6387和6388下线

6.2. 检查集群情况1获得6388的节点ID

redis-cli --cluster check 192.168.111.147:6382
image-20220506155659808
image-20220506155659808

6.3. 将6388删除 从集群中将4号从节点6388删除

命令

redis-cli --cluster del-node ip:从机端口 从机6388节点ID

redis-cli --cluster del-node 192.168.111.147:6388 5d149074b7e57b802287d1797a874ed7a1a284a8
image-20220506155753390
image-20220506155753390
redis-cli --cluster check 192.168.111.147:6382

检查一下发现,6388被删除了,只剩下7台机器了。

image-20220506155811986
image-20220506155811986

6.4. 将6387的槽号清空,重新分配,本例将清出来的槽号都给6381

redis-cli --cluster reshard 192.168.111.147:6381
image-20220506155842391
image-20220506155842391
image-20220506155850557
image-20220506155850557

6.5. 检查集群情况第二次

redis-cli --cluster check 192.168.111.147:6381

4096个槽位都指给6381,它变成了8192个槽位,相当于全部都给6381了,不然要输入3次,一锅端。

image-20220506155928759
image-20220506155928759

6.6. 将6387删除

命令:

redis-cli --cluster del-node ip:端口 6387节点ID

redis-cli --cluster del-node 192.168.111.147:6387 e4781f644d4a4e4d4b4d107157b9ba8144631451
image-20220506160011023
image-20220506160011023

6.7. 检查集群情况第三次

redis-cli --cluster check 192.168.111.147:6381
image-20220506160029776
image-20220506160029776