01_Redis面试题概要
1、什么是Redis?
Redis全称为:Remote Dictionary Server(远程数据服务),是一个基于内存且支持持久化的key-value数据库。具备以下三个特征:
- 多数据类型
- 持久化机制
- 主从同步
Redis 与其他 key - value 缓存产品有以下三个特点:
- Redis支持数据的持久化,可以将内存中的数据保存到磁盘中,重启的时候可以再次加载进行使用
- Redis不仅支持简单的key-value类型的数据,同时还提供list、set、zset、hash等数据结构的存储
- Redis支持数据的备份,即master-slave模式的数据备份
2、Redis 有什么优点和缺点?
Redis优点
- 读写性能优异,Redis能读的速度是110000次/s,写的速度是81000次/s
- 支持数据持久化,支持AOF和RDB两种持久化方式
- 支持事务,Rdis所有的操作都是原子性的,同时Redis还支持对几个操作合并后的原子性执行
- 数据结构丰富,除了支持string类型的value外还支持hash、set、zset\、list等数据结构
- 支持主从复制,主机会自动将数据同步到从机,可以进行读写分离
Redis缺点
- 数据库容量受到物理内存的限制,不能用作海量数据的高性能读写,因此Redis 适合的场景主要局限在较小数据量的高性能操作和运算上
- Redis 不具备自动容错和恢复功能,主机从机的宕机都会导致前端部分读写请求失败,需要等待机器重启或者手动切换前端的IP才能恢复
- 主机宕机,宕机前有部分数据未能及时同步到从机,切换IP后还会引入数据不一致的问题,降低了系统的可用性
- Redis 较难支持在线扩容,在集群容量达到上限时在线扩容会变得很复杂。为避免这一问题,运维人员在系统上线时必须确保有足够的空间,这对资源造成了很大的浪费
3、Redis 的数据类型有哪些?
- String:这是最简单的类型,就是普通的 set 和 get,做简单的 KV 缓存
- Hash:这个是类似 map 的一种结构,这个一般就是可以将结构化的数据,比如一个对象(前提是这个对象没嵌套其他的对象)给缓存在 Redis 里,然后每次读写缓存的时候,可以就操作 hash 里的某个字段
- List:List 是有序列表,这个可以玩儿出很多花样。比如可以通过 list 存储一些列表型的数据结构,类似粉丝列表、文章的评论列表之类的东西
- Set:是无序集合,自动去重。直接基于 set 将系统里需要去重的数据扔进去,自动就给去重了,如果你需要对一些数据进行快速的全局去重,你当然也可以基于 jvm 内存里的 HashSet 进行去重,但是如果你的某个系统部署在多台机器上呢?得基于 Redis 进行全局的 set 去重
- Zsetsorted Set :排序的 set,去重但可以排序,写进去的时候给一个分数,自动根据分数排序。 可以用来做排行榜相关功能。
我们实际项目中比较常用的是 string
,hash 如果你是 Redis 中高级用户,还需要加上下面几种数据结构 HyperLogLog、Geo、Pub/Sub
4、Redis 是单线程的吗?
说法一:这里的单线程指的是Redis网络请求模块使用了一个线程(所以不考虑线程安全性),即一个线程处理所有网络请求,其他模块仍用了多个线程
说法二:Redis是单进程单线程的,redis利用队列技术将并发访问变为串行访问 ,消除了传统数据库串行控制的开销
5、Redis 为什么设计成单线程的?
- 绝大部分请求是纯粹的内存操作(非常迅速)
- 采用单线程,避免了不必要的上下文切换和竞争条件
- 非阻塞IO,内部采用epoll,epoll的读、写、关闭、连接都转化成了事件,然后利用epoll的多路复用特性,避免IO代价(慎重说)
6、Redis 和 Memcached 的区别有哪些?
从以下8个方面来讲:
- Redis 和 Memcache 都是将数据存放在内存中,都是内存数据库。不过 Memcache 还可用于缓存其他东西,例如图片、视频等等
- Memcache 仅支持key-value结构的数据类型,Redis不仅仅支持简单的key-value类型的数据,同时还提供list,set,hash等数据结构的存储
- 虚拟内存– Redis 当物理内存用完时,可以将一些很久没用到的value 交换到磁盘分布式–设定 Memcache 集群,利用 magent 做一主多从; Redis 可以做一主多从。都可以一主一从
- 存储数据安全– Memcache 挂掉后,数据没了; Redis 可以定期保存到磁盘(持久化)
- Memcache 的单个value最大 1m,Redis 的单个value最大 512m
- 灾难恢复– Memcache 挂掉后,数据不可恢复; Redis 数据丢失后可以通过 aof 恢复
- Redis 原生就支持集群模式, Redis3.0 版本中,官方便能支持Cluster模式了, Memcached 没有原生的集群模式,需要依赖客户端来实现,然后往集群中分片写入数据
- Memcached 网络IO模型是多线程,非阻塞IO复用的网络模型,原型上接近于 nignx。而 Redis使用单线程的IO复用模型,自己封装了一个简单的 AeEvent 事件处理框架,主要实现类epoll,kqueue 和 select,更接近于Apache早期的模式
7、请说说 Redis 的线程模型?(慎重)
Redis 内部使用文件事件处理器 file event handler,这个文件事件处理器是单线程的,所以Redis 才叫做单线程的模型。它采用 IO 多路复用机制同时监听多个 socket,根据 socket 上的事件来选择对应的事件处理器进行处理。
文件事件处理器的结构包含 4 个部分:
- 多个 socket
- IO 多路复用程序
- 文件事件分派器
- 事件处理器(连接应答处理器、命令请求处理器、命令回复处理器)
多个 socket 可能会并发产生不同的操作,每个操作对应不同的文件事件,但是 IO 多路复用程序会监听多个 socket,会将 socket 产生的事件放入队列中排队,事件分派器每次从队列中取出一个事件,把该事件交给对应的事件处理器进行处理!
来看客户端与 Redis 的一次通信过程:
下面来大致说一下这个图:
- 客户端 Socket01 向 Redis 的 Server Socket 请求建立连接,此时 Server Socket 会产生一个AE_READABLE 事件,IO 多路复用程序监听到 server socket 产生的事件后,将该事件压入队列 中。文件事件分派器从队列中获取该事件,交给连接应答处理器。连接应答处理器会创建一个 能与客户端通信的 Socket01,并将该 Socket01 的 AE_READABLE 事件与命令请求处理器关联
- 假设此时客户端发送了一个 set key value 请求,此时 Redis 中的 Socket01 会产生AE_READABLE 事件,IO 多路复用程序将事件压入队列,此时事件分派器从队列中获取到该事 件,由于前面 Socket01 的 AE_READABLE 事件已经与命令请求处理器关联,因此事件分派器 将事件交给命令请求处理器来处理。命令请求处理器读取 Socket01 的 set key value 并在自己 内存中完成 set key value 的设置。操作完成后,它会将 Socket01 的 AE_READABLE事件与命令回复处理器关联
- 如果此时客户端准备好接收返回结果了,那么 Redis 中的 Socket01 会产生一个AE_WRITABLE 事件,同样压入队列中,事件分派器找到相关联的命令回复处理器,由命令回复处理器对 Socket01 输入本次操作的一个结果,比如 ok,之后解除 Socket01 的AE_WRITABLE 事件与命令回复处理器的关联
8、为什么 Redis 单线程模型也能效率这么高?
可以从下面5个方面来回答:
C语言实现,效率高
纯内存操作
基于非阻塞的IO复用模型机制
单线程的话就能避免多线程的频繁上下文切换问题
丰富的数据结构(全程采用hash结构,读取速度非常快,对数据存储进行了一些优化,比如亚索表,跳表等
9、一个字符串类型的值能存储最大容量是多少?
512M
10、Redis 的持久化机制是什么?各自的优缺点?
Redis 提供了两种方式,实现数据的持久化到硬盘。
1、【全量】RDB持久化,是指在指定的时间间隔内将内存中的数据集快照写入磁盘。实践操作过程是:fork一个子进程,先将数据集写入临时文件,写入成功后,再替换之前的文件,用二进制压缩存储。
优点
- 只有一个dump.rdb文件,方便持久化
- 容灾性好,一个文件可以保存到安全的磁盘
- 性能最大化,fork子进程来完成写操作,让主进程继续处理命令。使用单独子进程来进行持久化,主线程不会进行任何IO操作,保证了redis的高性能
- 相对于数据集大时,比AOF的启动效率更高
缺点
- 如果你想保证数据的高可用性,即最大限度的避免数据丢失,那么 RDB 将不是一个很好的选择。因为系统一旦在定时持久化之前出现宕机现象,此前没有来得及写入磁盘的数据都将丢失。
所以,RDB 实际场景下,需要和 AOF 一起使用
- 由于 RDB 是通过 fork 子进程来协助完成数据持久化工作的,因此,如果当数据集较大时,可能会导致整个服务器停止服务几百毫秒,甚至是 1 秒钟。所以,RDB 建议在业务低估,例如在半夜执行
2、【增量】AOF持久化,以日志的形式记录服务器所处理的每一个写、删除操作,查询操作不会记录,以文本的方式记录,可以打开文件看到详细的操作记录
优点
该机制可以带来更高的数据安全性,即数据持久性。Redis 中提供了 3 种同步策略,即每秒同步、每修改(执行一个命令)同步和不同步
- 事实上,每秒同步也是异步完成的,其效率也是非常高的,所差的是一旦系统出现宕机现象,那么这一秒钟之内修改的数据将会丢失。
- 而每修改同步,我们可以将其视为同步持久化,即每次发生的数据变化都会被立即记录到磁盘中。可以预见,这种方式在效率上是最低的。
- 至于不同步,无需多言,我想大家都能正确的理解它
由于该机制对日志文件的写入操作采用的是 append 模式,因此在写入过程中即使出现宕机现象,也不会破坏日志文件中已经存在的内容。
- 因为以 append-only 模式写入,所以没有任何磁盘寻址的开销,写入性能非常高。
- 另外,如果我们本次操作只是写入了一半数据就出现了系统崩溃问题,不用担心,在 Redis 下一次启动之前,我们可以通过 redis-check-aof 工具来帮助我们解决数据一致性的问题
如果 AOF 日志过大,Redis 可以自动启用 rewrite 机制。即使出现后台重写操作,也不会影响客户端的读写。因为在 rewrite log 的时候,会对其中的指令进行压缩,创建出一份需要恢复数据的最小日志出来。再创建新日志文件的时候,老的日志文件还是照常写入。当新的 merge 后的日志文件 ready 的时候,再交换新老日志文件即可
AOF 包含一个格式清晰、易于理解的日志文件用于记录所有的修改操作。事实上,我们也可以通过该文件完成数据的重建
缺点
对于相同数量的数据集而言,AOF 文件通常要大于 RDB 文件。RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。(首要回答)
根据同步策略的不同,AOF 在运行效率上往往会慢于 RDB,总之,每秒同步策略的效率是比较高的,同步禁用策略的效率和 RDB 一样高效
以前 AOF 发生过 bug,就是通过 AOF 记录的日志,进行数据恢复的时候,没有恢复一模一样的数据出来。所以说,类似 AOF 这种较为复杂的基于命令日志/merge/回放的方式,比基于 RDB 每次持久化一份完整的数据快照文件的方式,更加脆弱一些,容易有 bug。不过 AOF 就是为了避免 rewrite 过程导致的 bug,因此每次 rewrite 并不是基于旧的指令日志进行 merge 的,而是基于当时内存中的数据进行指令的重新构建,这样健壮性会好很多
11、两种持久化方式该如何选择?
- bgsave 做镜像全量持久化,AOF 做增量持久化。因为 bgsave 会耗费较长时间,不够实时,在停机的时候会导致大量丢失数据,所以需要 AOF 来配合使用。在 Redis 实例重启时,会使用 bgsave 持久化文件重新构建内存,再使用 AOF 重放近期的操作指令来实现完整恢复重启之前的状态
- 一般来说, 如果想达到足以媲美PostgreSQL的数据安全性, 你应该同时使用两种持久化功能。如果你非常关心你的数据, 但仍然可以承受数分钟以内的数据丢失,那么你可以只使用RDB持久化
- 有很多用户都只使用AOF持久化,但并不推荐这种方式:因为定时生成RDB快照(snapshot)非常便于进行数据库备份, 并且 RDB 恢复数据集的速度也要比AOF恢复的速度要快,除此之外, 使用RDB还可以避免之前提到的AOF程序的问题
12、面试官追问那如果突然机器断电缓存的数据会怎样?(真心遇到过)
取决于 AOF 日志 sync 属性的配置,如果不要求性能,在每条写指令时都 sync 一下磁盘,就不会丢失数据。但是在高性能的要求下每次都 sync 是不现实的,一般都使用定时 sync,比如 1 秒 1 次,这个时候最多就会丢失 1 秒的数据。 实际上,极端情况下,是最多丢失 2 秒的数据。因为 AOF 线程,负责每秒执行一次 fsync 操作,操作完成后,记录最后同步时间,主线程,负责对比上次同步时间,如果超过 2 秒,阻塞等待成功。
13、面试官追问 bgsave 的原理是什么?
fork 和 cow。fork 是指 Redis 通过创建子进程来进行 bgsave 操作。cow 指的是 copy on write,子进程创建后,父子进程共享数据段,父进程继续提供读写服务,写脏的页面数据会逐渐和子进程分离开来。 这里 bgsave 操作后,会产生 RDB 快照文件。
14、Redis 常见性能问题和解决方案:
Master 最好不要写内存快照,如果 Master 写内存快照,save 命令调度 rdbSave函数,会阻塞主线程的工作,当快照比较大时对性能影响是非常大的,会间断性暂停服务
如果数据比较重要,某个 Slave 开启 AOF 备份数据,策略设置为每秒同步一次
为了主从复制的速度和连接的稳定性,Master 和 Slave 最好在同一个局域网
尽量避免在压力很大的主库上增加从库
主从复制不要用图状结构,用单向链表结构更为稳定,即:Master <- Slave1<- Slave2 <- Slave3…这样的结构方便解决单点故障问题,实现 Slave 对 Master的替换。如果 Master 挂了,可以立刻启用 Slave1 做 Master,其他不变
15、redis 过期键的删除策略?
定时删除:在设置键的过期时间的同时,创建一个定时器timer.让定时器在键的过期时间来临时,立即执行对键的删除操作
惰性删除:放任键过期不管,但是每次从键空间中获取键时,都检查取得的键是否过期,如果过期的话,就删除该键;如果没有过期,就返回该键
定期删除:每隔一段时间程序就对数据库进行一次检查,删除里面的过期键。至于要删除多少过期键,以及要检查多少个数据库,则由算法决定
16、Redis 的回收策略(淘汰策略)?
- volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最 少使用的数据淘汰
- volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过 期的数据淘汰
- volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意 选择数据淘汰
- allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
- allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
- no-enviction(驱逐):禁止驱逐数据
注意这里的 6 种机制,volatile 和 allkeys 规定了是对已设置过期时间的数据集淘 汰数据还是从全部数据集淘汰数据,后面的 lru、ttl 以及 random 是三种不同的淘汰策略,再加上一种 no-enviction 永不回收的策略。
使用策略规则:
- 如果数据呈现幂律分布,也就是一部分数据访问频率高,一部分数据访问频率低,则使用 allkeys-lru
- 如果数据呈现平等分布,也就是所有的数据访问频率都相同,则使用allkeys-random
17、为什么 redis 需要把所有数据放到内存中?
Redis 为了达到最快的读写速度将数据都读到内存中,并通过异步的方式将数据写入磁盘。所以 redis 具有快速和数据持久化的特征。如果不将数据放在内存中,磁盘 I/O 速度为严重影响 redis 的性能。在内存越来越便宜的今天,redis 将会越来越受欢迎。如果设置了最大使用的内存,则数据已有记录数达到内存限值后不能继续插入新值。
18、Redis 的同步机制了解么?
Redis 可以使用主从同步,从从同步。第一次同步时,主节点做一次 bgsave,并同时将后续修改操作记录到内存 buffer,待完成后将 rdb 文件全量同步到复制节点,复制节点接受完成后将 rdb 镜像加载到内存。加载完成后,再通知主节点将期间修改的操作记录同步到复制节点进行重放就完成了同步过程。
19、熟悉Redis的哪些客户端?
Jedis
是我们最熟悉和最常用的客户端。轻量,简洁,便于集成和改造。
Jedis 多个线程使用一个连接的时候线程不安全。可以使用连接池,为每个请求创建不同的连接,基于 Apache common pool 实现。跟数据库一样,可以设置最大连接数等参数。Jedis 中有多种连接池的子类
Jedis 有 4 种工作模式:单节点
、分片
、哨兵
、集群
。
3 种请求模式:Client
、Pipeline
、事务
。Client 模式就是客户端发送一个命令,阻塞等待服务端执行,然后读取 返回结果。Pipeline 模式是一次性发送多个命令,最后一次取回所有的返回结果,这种模式通过减少网络的往返时间和 io 读写次数,大幅度提高通信性能。第三种是事务模式。Transaction 模式已开启 Redis 的事务管理,事务模式开启后,所有的命令(除了 exec,discard,multi 和 watch)到达服务端以后不会立即执行,会进入一个等待队列。
Luttece
与 Jedis 相比,Lettuce 则完全克服了其线程不安全的缺点:Lettuce 是一个可伸缩的线程安全的 Redis 客户端,支持同步、异步和响应式模式(Reactive)。多个线程可以共享一个连接实例,而不必担心多线程并发问题。
同步调用:异步的结果使用 RedisFuture 包装,提供了大量回调的方法。
异步调用:它基于 Netty 框架构建,支持 Redis 的高级功能,如 Pipeline、发布订阅,事务、Sentinel,集群,支持连接池。Lettuce 是 Spring Boot 2.x 默认的客户端,替换了 Jedis。集成之后我们不需要单独使用它,直接调用 Spring 的 RedisTemplate
操作,连接和创建和关闭也不需要我们操心。
Redisson
是一个在 Redis 的基础上实现的 Java 驻内存数据网格(In-Memory Data Grid),提供了分布式和可扩展的 Java 数据结构。
特点
- 基于 Netty 实现,采用非阻塞 IO,性能高
- 支持异步请求
- 支持连接池、pipeline、LUA Scripting、Redis Sentinel、Redis Cluster 不支持事务,官方建议以 LUA Scripting 代替事务
- 主从、哨兵、集群都支持。Spring 也可以配置和注入 RedissonClient。
20、Jedis 与 Redisson 对比有什么优缺点?
Jedis
是 Redis 的 Java 实现的客户端,其 API 提供了比较全面的 Redis 命令的支持;Redisson
实现了分布式和可扩展的 Java 数据结构,和 Jedis 相比,功能较为简单,不支持字符串操作,不支持排序、事务、管道、分区等 Redis 特性。Redisson 的宗旨是促进使用者对 Redis 的关注分离,从而让使用者能够将精力更集中地放在处理业务逻辑上。
21、Redis 如何设置密码及验证密码?
设置密码:config set requirepass 123456
授权密码:auth 123456
22、什么是 Redis 事务?相关命令?
事务:
- 事务是一个单独的隔离操作:事务中的所有命令都会序列化、按顺序地执行。 事务在执行的过程中,不会被其他客户端发送来的命令请求所打断。
- 事务是一个原子操作:事务中的命令要么全部被执行,要么全部都不执行。
Redis的事务相关命令有:
(1)DISCARD:取消事务,放弃执行事务块中的所有命令
(2)EXEC:执行事务块中的命令
(3)MULTI:标记一个事务的开始
(4)UNWATCH:取消WATCH命令对所有 key 的监视
(5)WATCH key [key...]:监视一个(或多个)key,如果在事务之前执行这个(或者这些)key被其他命令所改动,那么事务将会被打断。
23、Redis 事务的注意点有哪些?
不支持回滚,如果事务中有错误的操作,无法回滚到处理前的状态,需要开发者处理。
在执行完当前事务内所有指令前,不会同时执行其他客户端的请求。
24、为什么Redis 事务不支持回滚?
Redis 事务不支持回滚,如果遇到问题,会继续执行余下的命令。 这一点和关系型数据库不太一致。这样处理的原因有:
- 只有语法错误,Redis才会执行失败,例如错误类型的赋值, 这就是说从程序层面完全可以捕获以及解决这些问题
- 支持回滚需要增加很多工作,不支持的情况下,Redis 可以保持简单、速度快的特性
25、Redis有哪些使用场景?
1、会话缓存(Session Cache)
最常用的一种使用 Redis 的情景是会话缓存(session cache)。用 Redis 缓存会 话比其他存储(如 Memcached)的优势在于:Redis 提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,现在,他们还会这样吗? 幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用 Redis 来缓存会话的文档。甚至广为人知的商业平台Magento 也提供 Redis 的插件。
2、全页缓存(FPC)
除基本的会话 token 之外,Redis 还提供很简便的 FPC 平台。回到一致性问题, 即使重启了 Redis 实例,因为有磁盘的持久化,用户也不会看到页面加载速度的 下降,这是一个极大改进,类似 PHP 本地 FPC。 再次以 Magento 为例,Magento 提供一个插件来使用 Redis 作为全页缓存后端。 此外,对 WordPress 的用户来 说,Pantheon 有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加 载你曾浏览过的页面。
3、队列
Reids 在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得 Redis能作为一个很好的消息队列平台来使用。Redis 作为队列使用的操作,就类似于本地程序语言(如 Python)对 list 的 push/pop 操作。 如果你快速的在 Google中搜索“Redis queues”,你马上就能找到大量的开源项目,这些项目的目的就是利用 Redis 创建非常好的后端工具,以满足各种队列需求。例如,Celery 有一个后台就是使用 Redis 作为 broker,你可以从这里去查看。
4、排行榜/计数器
Redis 在内存中对数字进行递增或递减的操作实现的非常好。集合(Set)和有序集合(Sorted Set)也使得我们在执行这些操作的时候变的非常简单,Redis 只是正好提供了这两种数据结构。所以,我们要从排序集合中获取到排名最靠前的 10个用户–我们称之为“user_scores”,我们只需要像下面一样执行即可: 当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执行: ZRANGE user_scores 0 10 WITHSCORES Agora Games 就是一个很好的例子,用 Ruby 实现的,它的排行榜就是使用 Redis 来存储数据的,你可以在这里看到。
5、发布/订阅
最后(但肯定不是最不重要的)是 Redis 的发布/订阅功能。发布/订阅的使用场景确实非常多。我已看见人们在社交网络连接中使用,还可作为基于发布/订阅的脚本触发器,甚至用 Redis 的发布/订阅功能来建立聊天系统!
26、如何使用 Redis 实现分布式锁?
使用redis实现分布式锁的思路:
- setnx(String key,String value)
若返回1,说明设置成功,获取到锁;
若返回0,说明设置失败,已经有了这个key,说明其它线程持有锁,重试。
- expire(String key, int seconds)
获取到锁(返回1)后,还需要用设置生存期,如果在多少秒内没有完成,比如发生机器故障、网络故障等,键值对过期,释放锁,实现高可用。
- del(String key)
完成业务后需要释放锁。释放锁有2种方式:del删除key,或者expire将有效期设置为0(马上过期)。
在执行业务过程中,如果发生异常,不能继续往下执行,也应该马上释放锁。
如果你的项目中Redis是多机部署的,那么可以尝试使用Redisson实现分布式锁,这是Redis官方提供的Java组件。
27、分布式锁的实现条件?
互斥性,和单体应用一样,要保证任意时刻,只能有一个客户端持有锁
可靠性,要保证系统的稳定性,不能产生死锁
一致性,要保证锁只能由加锁人解锁,不能产生A的加锁被B用户解锁的情况
28、Redis 的同步机制了解么?
答:Redis 可以使用主从同步,从从同步。第一次同步时,主节点做一次 bgsave,并同时将后续修改操作记录到内存 buffer,待完成后将 rdb 文件全量同步到复制节点,复制节点接受完成后将rdb 镜像加载到内存。加载完成后,再通知主节点将期间修改的操作记录同步到复制节点进行重放就完成了同步过程。
29、如何使用 Redis Sentinel 实现高可用?
什么是Redis Sentinel(哨兵)?
Redis Sentinel 是社区版本推出的原生高可用解决方案,其部署架构主要包括两部分:Redis Sentinel 集群和 Redis 数据集群。
其中 Redis Sentinel 集群是由若干 Sentinel 节点组成的分布式集群,可以实现故障发现、故障自动转移、配置中心和客户端通知。Redis Sentinel 的节点数量要满足 2n+1(n>=1)的奇数个。
实现Redis Sentinel高可用
Redis 的 Sentinel 系统用于管理多个 Redis 服务器(instance), 该系统执行以下三个任务:
- 监控(Monitoring): Sentinel 会不断地检查你的主服务器和从服务器是否运作正常。
- 提醒(Notification): 当被监控的某个 Redis 服务器出现问题时, Sentinel 可以通过 API 向管理员或者其他应用程序发送通知。
- 自动故障迁移(Automatic failover): 当一个主服务器不能正常工作时, Sentinel 会开始一次自动故障迁移操作, 它会将失效主服务器的其中一个从服务器升级为新的主服务器, 并让失效主服务器的其他从服务器改为复制新的主服务器; 当客户端试图连接失效的主服务器时, 集群也会向客户端返回新主服务器的地址, 使得集群可以使用新主服务器代替失效服务器。
Redis Sentinel 是一个分布式系统, 你可以在一个架构中运行多个 Sentinel 进程(progress), 这些进程使用流言协议(gossip protocols)来接收关于主服务器是否下线的信息, 并使用投票协议(agreement protocols)来决定是否执行自动故障迁移, 以及选择哪个从服务器作为新的主服务器。
虽然 Redis Sentinel 释出为一个单独的可执行文件 redis-sentinel,但实际上它只是一个运行在特殊模式下的 Redis 服务器, 你可以在启动一个普通 Redis 服务器时通过给定 –sentinel 选项来启动 Redis Sentinel。
30、如果使用 Redis Cluster 实现高可用?
什么是Redis Cluster?
- Redis Cluster 是社区版推出的 Redis 分布式集群解决方案,主要解决 Redis 分布式方面的需求,比如,当遇到单机内存,并发和流量等瓶颈的时候,Redis Cluster 能起到很好的负载均衡的目的。
- Redis Cluster 集群节点最小配置 6 个节点以上(3 主 3 从),其中主节点提供读写操作,从节点作为备用节点,不提供请求,只作为故障转移使用。
- Redis Cluster 采用虚拟槽分区,所有的键根据哈希函数映射到 0~16383 个整数槽内,每个节点负责维护一部分槽以及槽所印映射的键值数据。
使用 Redis Cluster 实现高可用
- Redis Cluster 是社区版推出的 Redis 分布式集群解决方案,主要解决 Redis 分布式方面的需求,比如,当遇到单机内存,并发和流量等瓶颈的时候,Redis Cluster 能起到很好的负载均衡的目的。
- Redis Cluster 集群节点最小配置 6 个节点以上(3 主 3 从),其中主节点提供读写操作,从节点作为备用节点,不提供请求,只作为故障转移使用。
- Redis Cluster 采用虚拟槽分区,所有的键根据哈希函数映射到 0~16383 个整数槽内,每个节点负责维护一部分槽以及槽所印映射的键值数据。
优点
无中心架构;
数据按照 slot 存储分布在多个节点,节点间数据共享,可动态调整数据分布;
可扩展性:可线性扩展到 1000 多个节点,节点可动态添加或删除;
高可用性:部分节点不可用时,集群仍可用。通过增加 Slave 做 standby 数据副本,能够实现故障自动 failover,节点之间通过 gossip 协议交换状态信息,用投票机制完成 Slave 到 Master 的角色提升;
降低运维成本,提高系统的扩展性和可用性。
缺点
Client 实现复杂,驱动要求实现 Smart Client,缓存 slots mapping 信息并及时更新,提高了开发难度,客户端的不成熟影响业务的稳定性。目前仅 JedisCluster 相对成熟,异常处理部分还不完善,比如常见的“max redirect exception”。
节点会因为某些原因发生阻塞(阻塞时间大于 clutser-node-timeout),被判断下线,这种 failover 是没有必要的。
数据通过异步复制,不保证数据的强一致性。
多个业务使用同一套集群时,无法根据统计区分冷热数据,资源隔离性较差,容易出现相互影响的情况。
Slave 在集群中充当“冷备”,不能缓解读压力,当然可以通过 SDK 的合理设计来提高 Slave 资源的利用率。
31、是否使用过 Redis 集群,集群的原理是什么?
- Redis Sentinal 着眼于高可用,在 master 宕机时会自动将 slave 提升为master,继续提供服务。
- Redis Cluster 着眼于扩展性,在单个 redis 内存不足时,使用 Cluster 进行分片存储。
32、Redis 集群方案什么情况下会导致整个集群不可用?
答:有 A,B,C 三个节点的集群,在没有复制模型的情况下,如果节点 B 失败了,那么整个集群就会以为缺少 5501-11000 这个范围的槽而不可用。
33、说说 Redis 哈希槽的概念?
答:Redis 集群没有使用一致性 hash,而是引入了哈希槽的概念,Redis 集群有16384 个哈希槽,每个 key 通过 CRC16 校验后对 16384 取模来决定放置哪个槽,集群的每个节点负责一部分 hash 槽.
34、Redis 集群的主从复制模型是怎样的?
答:为了使在部分节点失败或者大部分节点无法通信的情况下集群仍然可用,所以集群使用了主从复制模型,每个节点都会有 N-1 个复制品。
35、Redis 集群会有写操作丢失吗?为什么?
答:Redis 并不能保证数据的强一致性,这意味这在实际中集群在特定的条件下可能会丢失写操作。
36、Redis 集群如何选择数据库?
答:Redis 集群目前无法做数据库选择,默认在 0 数据库。
37、怎么测试 Redis 的连通性?
答:使用 ping 命令。
redis-cli -h host -p port -a password
127.0.0.1:6379> ping
PONG
127.0.0.1:6379>
38、Redis key 的过期时间和永久有效分别怎么设置?
设置了过期时间,100秒后,key将自动被删除。
EXPIRE key 100
永久有效
PERSIST key
39、Redis 如何做内存优化?
答:尽可能使用散列表(hashes),散列表(是说散列表里面存储的数少)使用的内存非常小,所以你应该尽可能的将你的数据模型抽象到一个散列表里面。比如你的 web 系统中有一个用户对象,不要为这个用户的名称,姓氏,邮箱,密码设置单独的 key,而是应该把这个用户的所有信息存储到一张散列表里面.
40、Redis 回收进程如何工作的?
答:一个客户端运行了新的命令,添加了新的数据。Redi 检查内存使用情况,如果大于 maxmemory 的限制, 则根据设定好的策略进行回收。一个新的命令被执行,等等。所以我们不断地穿越内存限制的边界,通过不断达到边界然后不断地回收回到边界以下。如果一个命令的结果导致大量内存被使用(例如很大的集合的交集保存到一个新的键),不用多久内存限制就会被这个内存使用量超越。
41、都有哪些办法可以降低 Redis 的内存使用情况呢?
答:如果你使用的是 32 位的 Redis 实例,可以好好利用 Hash,list,sorted set,set等集合类型数据,因为通常情况下很多小的 Key-Value 可以用更紧凑的方式存放到一起.
42、Redis 的内存用完了会发生什么?
答:如果达到设置的上限,Redis 的写命令会返回错误信息(但是读命令还可以正常返回。)或者你可以将 Redis 当缓存来使用配置淘汰机制,当 Redis 达到内存上限时会冲刷掉旧的内容。
43、MySQL 里有 2000w 数据,redis 中只存 20w 的数据,如何保证 redis 中的数据都是热点数据?
答:Redis 内存数据集大小上升到一定大小的时候,就会施行数据淘汰策略。
相关知识:Redis 提供 6 种数据淘汰策略:
**volatile-lru:**从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
**volatile-ttl:**从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
**volatile-random:**从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
**allkeys-lru:**从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
**allkeys-random:**从数据集(server.db[i].dict)中任意选择数据淘汰
no-enviction(驱逐):禁止驱逐数据
44、假如 Redis 里面有 1 亿个 key,其中有 10w 个 key 是以某个固定的已知的前缀开头的,如果将它们全部找出来?
使用 keys 指令可以扫出指定模式的 key 列表
- 对方接着追问:如果这个 Redis 正在给线上的业务提供服务,那使用 keys 指令会有什么问题?
- 这个时候你要回答 Redis 关键的一个特性:Redis 的单线程的。keys 指令会导致线程阻塞一段时间,线上服务会停顿,直到指令执行完毕,服务才能恢复。这个时候可以使用 scan 指令,scan 指令可以无阻塞的提取出指定模式的 key 列表,但是会有一定的重复概率,在客户端做一次去重就可以了,但是整体所花费的时间会比直接用 keys 指令长。
45、请说说你们生产环境中的 Redis 是怎么部署的?
- Redis Cluster,10 台机器,5 台机器部署了 Redis 主实例,另外 5 台机器部署了 Redis 的从实例,每个主实例挂了一个从实例,5 个节点对外提供读写服务,每个节点的读写高峰 qps 可能可以达到每秒 5 万,5 台机器最多是 25 万读写请求每秒。
- 机器是什么配置?32G 内存 + 8 核 CPU + 1T 磁盘,但是分配给 Redis 进程的是 10G 内存,一般线上生产环境,Redis 的内存尽量不要超过 10G,超过 10G 可能会有问题。那么,5 台机器对外提供读写,一共有 50G 内存。
- 因为每个主实例都挂了一个从实例,所以是高可用的,任何一个主实例宕机,都会自动故障迁移,Redis 从实例会自动变成主实例继续提供读写服务。
- 你往内存里写的是什么数据?每条数据的大小是多少?商品数据,每条数据是 10kb。100 条数据是 1mb,10 万条数据是 1G。常驻内存的是 200 万条商品数据,占用内存是 20G,仅仅不到总内存的 50%。目前高峰期每秒就是 3500 左右的请求量。
- 其实大型的公司,会有基础架构的 Team 负责缓存集群的运维。
46、什么是缓存穿透?怎么解决?
大量的请求瞬时涌入系统,而这个数据在 Redis 中不存在,所有的请求都落到了数据库上把数据库打死。造成这种情况的原因有系统设计不合理、缓存数据更新不及时,或爬虫等恶意攻击。 解决办法有:
- 使用布隆过滤器:使用细节
将查询的参数都存储到一个 bitmap 中,在查询缓存前,再找个新的 bitmap,在里面对参数进行验证。如果验证的 bitmap 中存在,则进行底层缓存的数据查询,如果 bitmap 中不存在查询参数,则进行拦截,不再进行缓存的数据查询。
- 缓存空对象
如果从数据库查询的结果为空,依然把这个结果进行缓存,那么当用 key 获取数据时,即使数据不存在,Redis 也可以直接返回结果,避免多次访问数据库。
但是缓存空值的缺点是:
- 如果存在黑客恶意的随机访问,造成缓存过多的空值,那么可能造成很多内存空间的浪费。但是也可以对这些数据设置很短的过期时间来控制;
- 如果查询的 key 对应的 Redis 缓存空值没有过期,数据库这时有了新数据,那么会出现数据库和缓存数据不一致的问题。但是可以保证当数据库有数据后更新缓存进行解决。
47、什么是缓存雪崩? 怎么解决?
缓存雪崩是指当大量缓存失效时,大量的请求访问直接请求数据库,导致数据库服务器无法抗住请求或挂掉的情况。这时网站常常会出现 502 错误,导致网站不可用问题。
在预防缓存雪崩时,建议遵守以下几个原则:
- 合理规划缓存的失效时间,可以给缓存时间加一个随机数,防止统一时间过期;
- 合理评估数据库的负载压力,这有利于在合理范围内部分缓存失,数据库也可以正常访问;
- 对数据库进行过载保护或应用层限流,这种情况下一般是在网站处于大流量、高并发时,服务器整体不能承受时,可以采用的一种限流保护措施;
- 最后还可以考虑多级缓存设计,实现缓存的高可用。
48、如何提高 Redis 命中率?
提供缓存命中率,通常有如下方式:
- 缓存预加载
- 增加缓存存储量
- 调整缓存存储数据类型
- 提升缓存更新频次